
Tutorial #1**What is a buffer and why are they important?****How does a buffer work?**

Sample problem #1: Identifying buffer solutions: Identify buffer solutions from the following list:

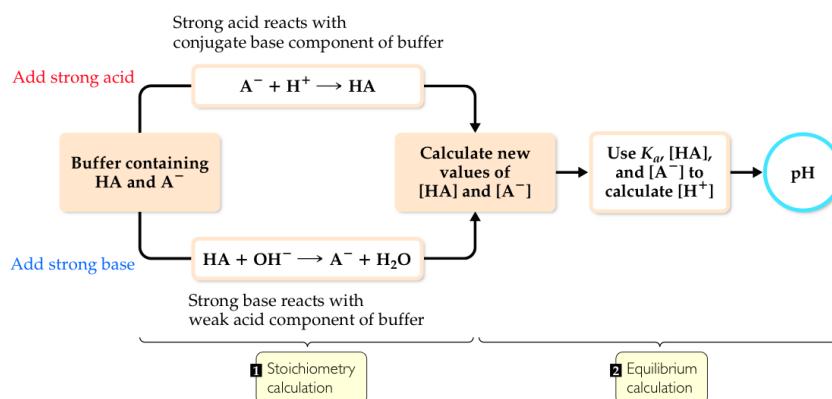
- (a) 0.13 M sodium hydroxide and 0.27 sodium bromide
- (b) 0.13 M nitrous acid and 0.14 sodium nitrite
- (c) 0.24 M nitric acid and 0.17 M sodium nitrate
- (d) 0.31 M calcium chloride and 0.25 M calcium bromide
- (e) 0.34 M ammonia and 0.38 M ammonium bromide

Buffer pH

The common ion effect:

▲ **Figure 17.2 Buffer action.** The pH of an HF/F⁻ buffered solution changes by only a small amount in response to addition of an acid or base.

Sample Exercise #2: Calculating the pH of a weak acid/conjugate base buffer


solution What is the pH of 125 mL of a 0.15 M solution of acetic acid before and after the addition of 0.015 mol of sodium acetate.

Sample Exercise #3: Calculate the pH of a weak base/conjugate acid buffer solution.
A 0.30 M aqueous solution of NH_3 has a pH of 11.37. Calculate the pH of a buffer solution that is 0.30 M in NH_3 and 0.23 M in ammonium bromide.

Henderson Hasselbach equation

When $[\text{weak acid}] = [\text{weak base}]$, $\text{pH} = \text{pK}_a + \log(1) = \text{pK}_a + 0 = \text{pK}_a$

Definition of buffer capacity and how a buffer reacts after the addition of a strong base or strong acid.

▲ Figure 17.3 Calculating the pH of a buffer after addition of a strong acid or strong base.

Sample Exercise #4: Use the Henderson Hasselbach equation to calculate pH of a buffer solution that is 0.18 M in H_2PO_4^- and 0.21 M in HPO_4^{2-} .

Sample Exercise #5: Calculate buffer pH after adding strong acid or strong base:

Determine the pH change when 0.020 mol HCl is added to 1.00 L of a buffer solution that is 0.10 M in $\text{CH}_3\text{CO}_2\text{H}$ and 0.25 M CH_3CO_2^- .

Making a Buffer Solution with a Desired pH**Step 1:****Step 2:****Sample Exercise #6: Prepare a Buffer by direct addition:**

Describe how to prepare 500 mL of a buffer solution with a pH = 9.85 using one of the weak acid/conjugate base systems shown here.

Weak Acid	Conjugate Base	K_a	pK_a
CH ₃ CO ₂ H	CH ₃ CO ₂ ⁻	1.8×10^{-5}	4.74
H ₂ PO ₄ ⁻	HPO ₄ ²⁻	6.2×10^{-8}	7.21
HCO ₃ ⁻	CO ₃ ²⁻	4.8×10^{-11}	10.32

Sample Exercise #7: Prepare a Buffer by acid base reactions:

Describe how to prepare a buffer solution with pH = 5.25 (using one of the weak acid/conjugate base systems shown below) by combining a 0.50 M solution of weak acid with any necessary amount of 1.00 M NaOH.

Weak Acid	Conjugate Base	K_a	pK_a
$\text{CH}_3\text{CO}_2\text{H}$	CH_3CO_2^-	1.8×10^{-5}	4.74
H_2PO_4^-	HPO_4^{2-}	6.2×10^{-8}	7.21
HCO_3^-	CO_3^{2-}	4.8×10^{-11}	10.32

