

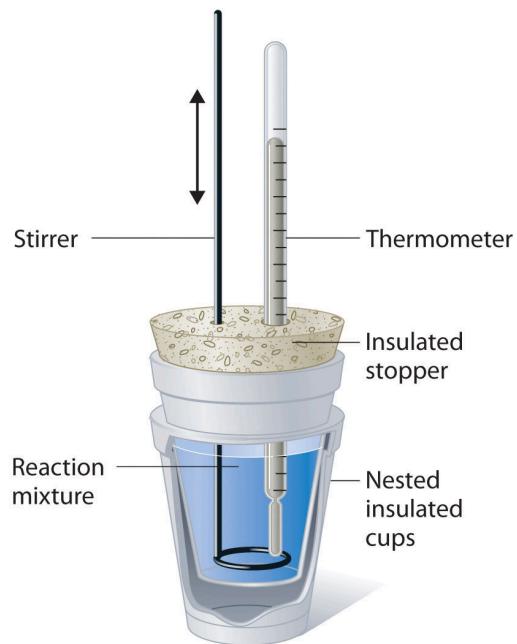
Calorimetry

OBJECTIVES:

- Use thermochemical equations to relate energy changes associated with heating or cooling a substance to heat capacity
- Use and manipulate thermochemical equations to relate the energy changes in a reaction to the amount of substance involved in the reaction.
- Calculate the heat transferred in a process using temperature measurements together with heat capacities or specific heats
- Define and identify how a calorimeter is used.

Calculating the heat of an increase (or decrease) in temperature:

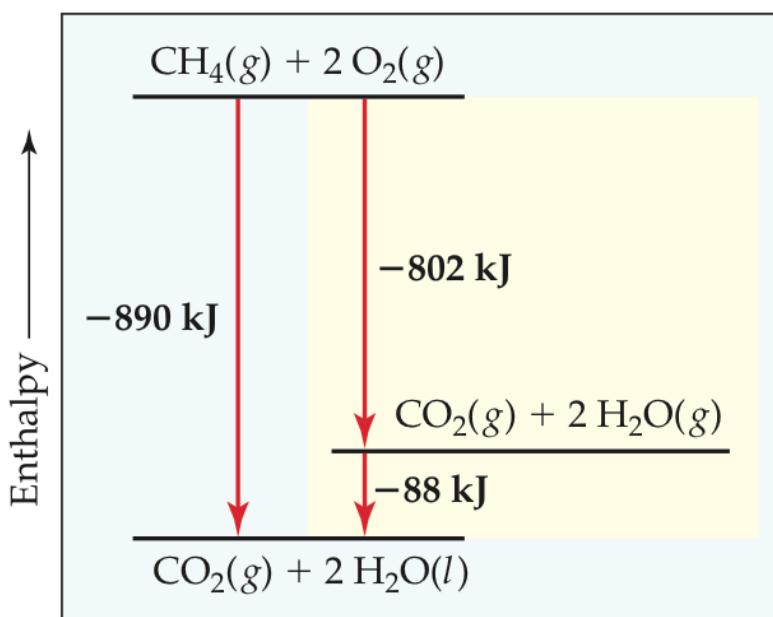
Calorimetry Definition


Specific Heat Equation:

Calculating ΔT

Sample Calorimetry Problem: How much heat must be added to change the temperature of 250g of water from 25° C to 60 ° C?

Enthalpy and Calorimetry:

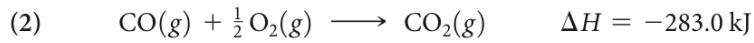
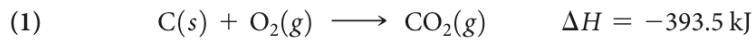

Coffee Cup Calorimeter

Sample Problem: A 100.0 g sample of water at 90°C is added to a 500.0 g sample of water at 10°C. Calculate the final temperature of the water.

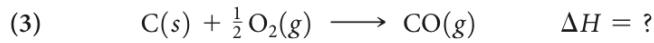
HESS'S LAW**Objectives:**

- Use Hess's law to determine enthalpy changes for reactions
- define enthalpy of formation and give examples

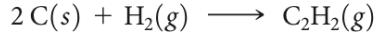
Using Hess's Law to calculate the enthalpy of a reaction:

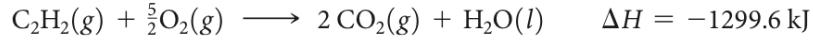


► **Figure 5.20** Enthalpy diagram for combustion of 1 mol of methane. The enthalpy change of the one-step reaction equals the sum of the enthalpy changes of the reaction run in two steps: $-890 \text{ kJ} = -802 \text{ kJ} + (-88 \text{ kJ})$.

KEY POINT: Because enthalpy is a STATE function, the enthalpy of a reaction is the same whether the reaction takes place in one step or several steps.

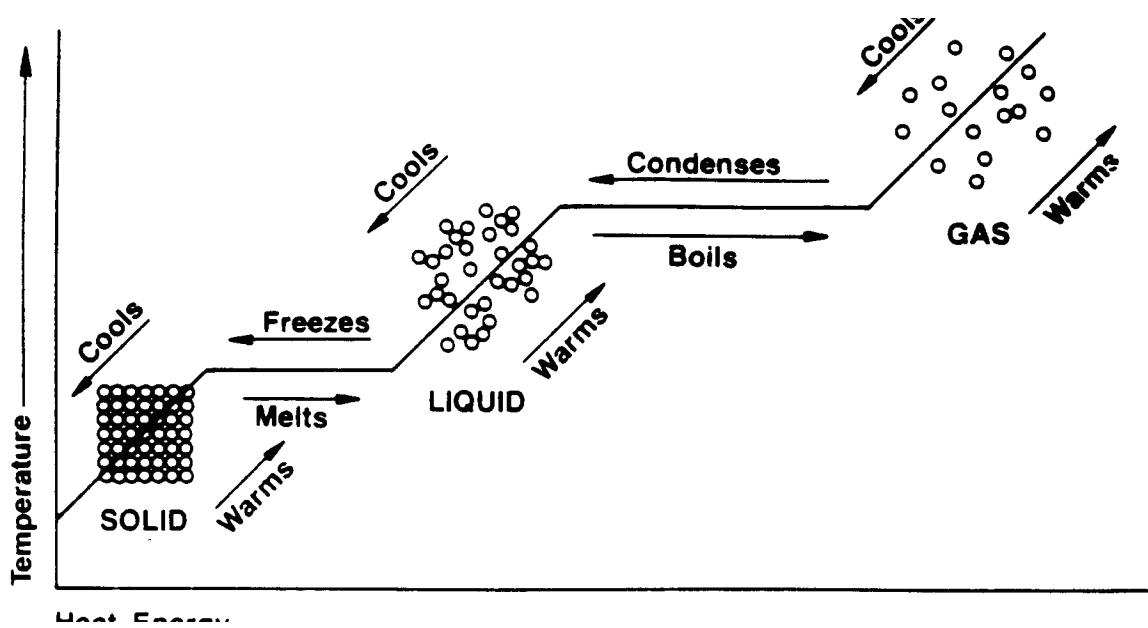

Sample Problem: The enthalpy of reaction for the combustion of C to CO₂ is -393.5 kJ/mol C, and the enthalpy for the combustion of CO to CO₂ is -283.0 kJ/mol CO.

SAMPLE**EXERCISE 5.9****Using Hess's Law to Calculate ΔH**


The enthalpy of reaction for the combustion of C to CO₂ is -393.5 kJ/mol C, and the enthalpy for the combustion of CO to CO₂ is -283.0 kJ/mol CO:


Using these data, calculate the enthalpy for the combustion of C to CO:

Sample Problem 2:**SAMPLE****EXERCISE 5.10****Using Three Equations with Hess's Law to Calculate ΔH**


Calculate ΔH for the reaction

given the following chemical equations and their respective enthalpy changes:

Enthalpy of Phase Changes

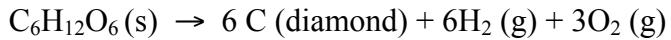
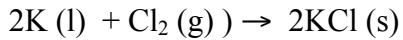
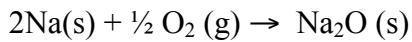
Calculating the enthalpy of a phase change

HEAT OF FORMATION

Objectives:

- recognize equations that describe standard enthalpy of formation
- use standard enthalpies of formation to calculate ΔH° for reaction

Heat of Formation




Definitions:

Standard State

Standard Enthalpy Change

Standard Enthalpy of Formation

Sample Exercise: For which of these reactions at 25°C does the enthalpy change represent a standard enthalpy of formation? For each that does not, what changes are needed to make it an equation whose ΔH is an enthalpy of formation?

Using Enthalpies of Formation to Calculate Enthalpies of Reaction

$$\Delta H^\circ_{rxn} = \sum$$

Sample Problem: (a) calculate the standard enthalpy change for the combustion of 1 mol of benzene, $C_6H_6(l)$ to $CO_2(g)$ and $H_2O(l)$ (b) Compare the quantity of heat produced by combustion of 1.00 g propane (from the notes above) with that produced by 1.00 g benzene

Sample Problem: Calculate the enthalpy of formation using an enthalpy of reaction

The standard enthalpy change for the reaction $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$ is 178.1 kJ. Use this information and the table of heats of formation to calculate the standard enthalpy of formation of $CaCO_3(s)$.